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Abstract. Coupled human balancing tasks are investigated based on both pseudo-
neural controllers characterized by time-delayed feedback with random gain and
natural human balancing tasks. It is shown numerically that, compared to single
balancing tasks, balancing tasks coupled by mechanical structures exhibit enhanced
stability against balancing errors in terms of both amplitude and velocity and also
improve the tracking ability of the controllers. We then perform an experiment in
which numerical pseudo-neural controllers are replaced with natural human balanc-
ing tasks carried out using computer mice. The results reveal that the coupling
structure generates asymmetric tracking abilities in subjects whose tracking abilities
are nearly symmetric in their single balancing tasks.
Keywords: Neural Controller, Mechanical Coupling, Visuomotor Tracking, Sta-
bility, Sensitivity

1. Introduction. Competitive and cooperative dynamics can arise when multiple
agents (autonomous entities) share common resources and environments. Extensive
research has been conducted on such mutual interactions. Research in this area can
be broadly classified into two categories: the field of mathematical ecology [1], which
finds group behavior models having low degrees of freedom, and the field of multi-
robot systems [2], which develops individual agents generating group behavior. In
these conventional approaches, couplings between agents are constructed using shared
resources or information.

On the other hand, it is also reasonable to consider another type of coupling, con-
structed of mechanical structures, for instance, connection rods placed between agents.
Such a mechanical type of coupling appears to play an important role in clarifying the
dynamics of agents, including humans and robots, which are in physical contact with
one another. This type of knowledge will be applicable to developing robots working
together or robots supporting human activities, based on physical contact. However,
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it appears that little is known about the type of dynamics that is produced by mechan-
ical coupling. Therefore, as a preliminary step toward solving this problem, we have
developed the coupled inverted pendula (CIP) model with four DOF [3], in which non-
linear behavior similar to interspecific competition in an ecosystem [1] can be directly
generated by individual mechanical structures of agents. The CIP model proposed by
the authors consists of a pair of independently PD–controlled inverted pendula, the
tips of which are connected through a rigid rod.

The primary approach used in the present study is to replace the PD controllers of
the CIP model with human balancing tasks. It follows that the two subjects perform
stick balancing tasks under the situation in which the tips of the sticks are mechanically
connected to each other. This approach will allow us to determine how humans work
together dynamically through physical contacts and will consequently provide helpful
information for developing robots to support human activities.

From an engineering point of view, stick balancing is basically achieved by the
tracking control technique (See References [4, 5] for typical examples in engineering
problems). However, human tracking control is known to exhibit further characteristics
beyond engineering tracking control. For example, the human tracking control is
known to have a relatively large time-delay caused by neural latency and parametric
random fluctuations typical of neural control [6]. In the field of statistical mechanics,
it has been reported that random fluctuations arising in single human stick balancing
tasks can be accurately modeled as an inverted pendulum with a time-delayed and
randomly modulated feedback controller [6]. Since such a controller does not simulate
the structure of neural networks [7, 8], it should be referred to as a pseudo-neural
control model of human balancing tasks. The most remarkable effect of the pseudo-
neural controller is that, near stability boundaries, parametric noise can allow the
controller to produce corrective movements on time scales shorter than the delay time
of the controller under certain suitable conditions, exhibiting the scaling laws typical
of the self-similarity dynamics of on-off intermittency [9]. This effect has also been
experimentally confirmed in regard to physical human tasks, such as stick balancing
[6, 10] and visuomotor tracking on a computer screen [11]. In these studies on the
human balancing task, however, the case for two coupled humans has never been
considered. Although common features of human control would remain even in the
coupled case, there must be specific effects related to interactions between the two
humans. This problem remains to be addressed.

In the present paper, we consider the open problem of what kind of dynamics may
arise when mechanical coupling is imposed on the balancing tasks by two humans
whose dynamics can be characterized by the time-delayed and randomly modulated
feedback controller. To achieve this, we propose a new model consisting of time-
delayed and randomly modulated feedback controllers that are coupled by a mechanical
structure equivalent to the proposed CIP model. For simplicity, we first derive a
linearized reduced–order version of the CIP model, after which we replace the PD
controllers with pseudo-neural controllers, as developed in the literature [6, 10, 11].
Using this model, we demonstrate the effects of coupling, namely, an improvement
in stability and sensitivity of the corrective motions in the balancing tasks. We also
perform an experiment in which we replace the numerical controllers with human
visuomotor tracking tasks performed by subjects using computer mice. It is shown
experimentally that the coupling structure between two subjects induces asymmetric
sensitivity in the corrective motions of the subjects.
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Figure 1. An intuitive example representing a coupled human balanc-
ing task.

2. Analytical Model.

2.1. Single balancing tasks. Human stick balancing tasks and their scaling prop-
erties have been accurately modeled as an inverted pendulum with a time-delayed
feedback of random gain of the following form [6]:

θ̈ + γθ̇ − α sin θ + β R(t)θ(t − τ) = 0 (1)

where τ is a time delay representing the latency of neural reflexes in human balancing
tasks and R(t) = 1 + νξ(t) is a random feedback gain, ξ(t) is standard Gaussian
white noise, and ν represents the strength of the noise. Note that a stick of length
l and constant linear density is modeled as α = 3g/(2l), where g is the gravitational
acceleration.

Assuming that θ ≈ ∆x, |∆x| ≪ 1, we obtain the linearized version of (1):

∆ẍ + γ ∆ẋ − α ∆x + β R(t) ∆x(t − τ) = 0 (2)

which can be interpreted as an equation of motion of the relative displacement ∆x :=
xT (t) − xM(t), where xT is the displacement of the upper end of the stick and xM

is the displacement of the lower end of the stick in the balancing task. It has been
reported [11] that xT (t) and xM (t) are governed by the following equations:

ẍT + γẋT = α ∆x(t), ẍM + γẋM = β R(t) ∆x(t − τ). (3)

2.2. Coupled balancing tasks. In the present paper, we investigate the type of
stability that can arise if two subjects that can be balanced independently are linked
with a mechanical structure. Figure 1 shows an intuitive example representing this
situation, in which each subject manipulates one of the sticks at the lower end along
a mechanical slider with the goal of maintaining the stick in the upright position.
Let qT i and qMi (i = 1, 2) be the horizontal displacement of the upper and lower ends,
respectively, of the ith stick. Then, the presence of the connecting rod can be described
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Figure 2. Order reduction and linearization of the CIP model.

by the distance l := qT1 − qT2 maintained by the fixed length of the rod. Note that
this constant length yields the following equalities:

q̇T1 = q̇T2 =: q̇T , q̈T1 = q̈T2 =: q̈T . (4)

For a simpler description of this coupled task, we propose the following model:

2q̈T + 2γq̇T = α ∆q1(t) + α ∆q2(t),

q̈Mi + γq̇Mi = ui(t, τ),

ui(t, τ) := β Ri(t) ∆qi(t − τ) (i = 1, 2) (5)

where ∆qi := qT − qMi (i = 1, 2) represents the horizontal displacement between
the upper and lower ends, respectively, of the ith stick, as obtained in independent
balancing, and Ri(t) = 1 + νξi(t) (i = 1, 2) are independent random feedback gains,
where ξi (i = 1, 2) are mutually independent standard Gaussian white noises. The
second equation of (5) can be reduced to the following relative form:

∆q̈i + γ ∆q̇i −
1

2
α
(

∆q1 + ∆q2

)

+ ui(t, τ) = 0 (i = 1, 2). (6)

The proposed model (5) provides a linearized reduced-order counterpart of the CIP
model [3], as shown schematically in Fig.2. In other words, by assuming |θi| ≪ 1, the
gravitational restoring force proportional to sin θi in the CIP model is approximated
as a linear spring force with a negative coefficient α < 0. This setup is expected to
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Figure 3. Largest Lyapunov exponent λ1 for the single and coupled
balancing tasks as a function of the feedback gain β.

provide the simplest model of coupled human balancing tasks. Note that the coupled
model (6) coincides with the single model (2) if ∆q1 = ∆q2 and ∆q̇1 = ∆q̇2. In the
following, we choose γ = 50, α = 22, ν = 0.6, and τ = 0.1. For convenience, we refer
to ∆x and ∆qi as balancing errors.

The linearized model (5) conserves the essential instability of the stick in the up-
right position originally described in (1). Although this linear approximation becomes
invalid as the balancing errors ∆x and ∆qi increase, these errors remain sufficiently
small during the balancing task of maintaining the stick near the upright position.

3. Effects of Coupling in the Balancing Model.

3.1. On-off intermittency. The human stick balancing task exhibits on-off inter-
mittency with respect to the balancing error [6, 11], and the on-off intermittency oc-
curs when the largest Lyapunov exponent λ1 is slightly larger than zero [9]. Letting
q = (q1, q̇1, q2, q̇2) be the solution of (5) and letting ∆q be the infinitesimal distance
from the equilibrium point, we obtain the largest Lyapunov exponent λ1 defined by [9],

λ1 = lim
t→∞

1

t
log ‖∆q(t)‖ (7)

where ‖∆q‖ represents a Euclid norm of the vector ∆q.
Figure 3 shows the largest Lyapunov exponent λ1 of ∆x and ∆q1 as numerically

calculated from (2) and (5), respectively. The results for ∆q2 are omitted due to their
similarity to the results for ∆q1. We choose λ1 = 5 × 10−5 to be slightly larger than
zero in order to produce on-off intermittency of the balancing errors ∆x in (2) and
∆q1 in (5), as shown in Fig.4.

Figures 5(a) and 5(b) show double logarithmic plots of the power spectra of the
balancing errors ∆x and ∆q1, respectively. The results for ∆q2 are omitted due
to their similarity to the results for ∆q1. Both results have two linear slopes repre-
senting two power law regimes, which is in good agreement with previous balancing
experiments [6, 10, 11], in which the two slopes were interpreted as a sign of on-off
intermittency [9]. Based on these results, it can be concluded that the coupling term
does not change the scaling law typical of the on-off intermittency of balancing tasks.



6 EFFECTS OF MECHANICAL COUPLING ON THE DYNAMICS OF BALANCING TASKS

Figure 4. Balancing error ∆x(t) of the single system (2) for λ1 = 5 ×
10−4 (β = 20.306) and ∆q1(t) of the coupled system (5) for λ1 = 5×10−4

(β = 21.032).
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Figure 5. Scaling laws in the power spectra of (a) the single balancing
task in (2) for λ1 = 5×10−4 (β = 20.306) and (b) the coupled balancing
task in (5) for λ1 = 5 × 10−4 (β = 21.032).

3.2. Coupling-induced stability. The most remarkable effect of the coupling in (5)
is that the balancing error is drastically suppressed by the coupling, as shown in Figs.
4(a) and 4(b). In other words, the error ∆q1 for coupled balancing is as low as 1%
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Figure 6. Logarithmic plot of the root mean squares of balancing er-
ror generated by different samples of the white noise ξi(t). Solid lines
represent the respective mean values of the logarithmic plots.

of ∆x of that of single balancing in terms of both maximal values and root mean
square (RMS) values. Figure 6 shows logarithmic plots of 500 realizations of the RMS
values. The mean RMS values, represented by the solid lines, are 1.5 × 103 for single
balancing and 3.0 × 10−1 for coupled balancing. The results for ∆q2 are omitted due
to their similarity to those for ∆q1. Figure 6 shows that the coupling term reduces
the balancing error ∆q1(t) to 0.02% of ∆x for single balancing. This result implies
that the mechanical coupling structure can improve the stability of the amplitude in
human balancing tasks.

In order to examine the velocities of the balancing errors, the ratio of the probability
density p( ∆q̇1) divided by p( ∆ẋ) is shown in Fig.7, where ∆q̇1 and ∆ẋ are the
velocity errors for the coupled balancing and the single balancing tasks, respectively.
Figure 7 shows that p( ∆q̇1) is approximately twice as high as p( ∆ẋ) near the origin.
Since, in the linear approximation, the velocity errors ∆ẋ and ∆q̇i are proportional
to the respective slant angles of the sticks, the results suggest that the probability of
maintaining constant angles is nearly doubled by the mechanical coupling structure.

Based on these results, the mechanical coupling structure may reduce the balancing
error in terms of both amplitude and velocity under suitable conditions. Although it
is beyond the scope of the present study, one possible explanation of this coupling-
induced stability might be that the coupling causes some stochastic averaging effect,
whereby the two independent fluctuations ξi(t) (i = 1, 2) cancel each other through the
coupling constraint. This canceling process, however, occurs in a stochastic manner
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so that further stochastic analysis related to the noise-induced order [12] in the field
of statistical physics will be helpful in explaining the coupling-induced stability.

3.3. Coupling-induced sensitivity. It has been reported that near stability bound-
aries, parametric noise can allow time-delayed feedback controllers to produce correc-
tive movements on a time scale shorter than that of the delayed feedback [6]. In
order to observe the effect of this improvement in sensitivity as a function of time, we
consider the short-time cross-correlation coefficient (STCC) in the following manner.
Letting x(t), y(t) be a pair of time series to be compared and letting ∆t be the length
of the time interval of short-time averaging, we define the STCC as follows:

R(x, y; τ)(t) =
C(x − mx, y − my; τ, t)

σxσy
, (8)

where

C(x, y; τ, t) := 〈x(s)y(s + τ)〉[t,t+ ∆t],

mx := 〈x(s)〉[t,t+∆t], σx := 〈(x(s) − mx)
2〉

1/2
[t,t+∆t]

where 〈X(s)〉[a,b] := (b− a)−1
∫ b

a
X(s)ds is the temporal average of X(s) over the time

interval [a, b].
In the following, we draw a comparison between the velocities of the upper end and

the lower end of each stick by using the STCC in (8). More specifically, we focus on
R(ẋT , ẋM) for the single system (3) and R(q̇T , q̇M1) (i = 1, 2) for the coupled system
(5). Moreover, in order to evaluate the sensitivity of the corrective movements of the
feedback controllers, we also define the first dominant peak points τ̂ẋ, τ̂q̇1

, and τ̂q̇2
in

R(ẋT , ẋM) and R(q̇T , q̇Mi) (i = 1, 2). These peak points are assumed to evaluate the
tracking abilities of the feedback controllers.

Figure 8 shows the realization of the STCCs, R(q̇T , q̇M1) and R(q̇T , q̇M2) of the cou-
pled system (5) at t = 36 for ∆t = 5. In this plot, there are single peaks at τ̂q̇1

= 0.105
and τ̂q̇2

= 0.035. Since the delay time of the controller is τ = 0.1 in our calculations, on
average, the first controller u1(t, τ) corrects the stick movement more slowly than the
delay time, whereas the second controller u2(t, τ) performs the corrections in a shorter



EFFECTS OF MECHANICAL COUPLING ON THE DYNAMICS OF BALANCING TASKS 9

 0

 0.1

 0.2

 0.3

 0  0.05  0.1  0.15  0.2  0.25

S
ho

rt
-t

im
e 

cr
os

s-
co

rr
el

at
io

n 
co

ef
fic

ie
nt

τ

t = 36

τ̂q. 1

τ̂q. 2

R(q. T,q. M1;τ)
R(q. T,q. M2;τ)

Figure 8. Short-time cross-correlation coefficient at t = 36.

time than the delay time. Regarding τ̂q̇1
, τ̂q̇2

as the tracking ability of the controller,
the second controller can track the stick movement 0.105/0.035 = 3 times faster than
the first controller, which indicates that symmetrically placed controllers u1 and u2

having the same specifications can develop asymmetric tracking abilities over short
time scales.

The peak points τ̂ẋ and τ̂q̇i
(i = 1, 2) are plotted in Fig.9 as a function of time t.

The plots are numerically constructed from single realizations of numerical solutions
of (3) and (5). The peak points randomly fluctuate over time, forming intermittent
clusters of points. The sensitive region in which the peak point is smaller than the
delay time is confirmed to be of sufficient length for physical observations. However,
the effects of coupling are not clearly observable in Fig.9. Therefore, the differences
between the results (a), (b), and (c) in Fig.9 in these plots are slight.

In order to evaluate the effects of coupling on tracking ability, the probability densi-
ties of the peak points τ̂ẋ and τ̂q̇1

are shown in Fig.10 as averaged over 100 realizations
over the time interval [0, 1200] of the numerical solutions of (3) and (5). The results for
τ̂ (q̇2) are omitted because it is quite similar to that for τ̂(q̇1). It is clearly observed in
Fig.10 that the density of coupled balancing, represented as small rectangles, produces
a simple peak, which is 38% higher than that for single balancing, where the peak is
placed at a time scale of τ̂ , which is 20% shorter than that for single balancing.

Based on these results, it can be concluded that the mechanical coupling structure
increases the probability of the occurrence of faster corrective movements and improves
the tracking ability of the controllers. One possible interpretation could be that this
noise-induced sensitivity is a version of the stochastic resonance [13] (SR), a random
phenomenon modeled by a heavily damped particle moving randomly in a double
well potential. The SR approach has been applied to single human balancing [14].
However, the SR approach to the coupled human balancing remains unclear and will
be discussed later herein.
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Figure 9. First peak points τ̂ẋ(t), τ̂q̇1
(t), and τ̂q̇2

(t) of the short-
time cross-correlation coefficients R(ẋT , ẋM ; τ), R(q̇T , q̇M1; τ), and
R(q̇T , q̇M2; τ), respectively, at time t.
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4. Experiment of Coupled Visuomotor Tracking on a Computer Screen.

4.1. Experimental setup. We perform an experiment in which the numerical pseudo-
neural controllers in (5) are replaced by natural human balancing tasks, as shown in
Fig.11(a). In practice, the variable xM in the single model (3) is replaced with the
movement of a mouse manipulated by a subject, and qM1 and qM2 in (5) are replaced
by those of two subjects. Each subject is presented with combinations of thick and
thin lines on a computer screen, as shown in Fig.11(b). The thick lines represent the
upper ends xT and qT i as calculated from the numerical models (3) and (5), while
the thin lines represent the lower ends xM and qMi manipulated by the subjects. The
screen resolution is 1, 200 × 600 (pixels), where the range of the displacement [−3, 3]
in the numerical model maps to the horizontal range of pixels [1, 1, 200] on the screen.
The movements performed by the subjects xM and qMi are recorded and substituted
into the numerical models (3) and (5) with a sampling rate of 50 Hz, and the set of
lines on the screen is animated at the same rate.

The experimenter issues the following instructions to the subjects:

• Each subject should collaborate with his/her partner in order to maintain the
assigned pendulum, provided as an overhead view on the computer screen, in
the upright position by manipulating the lower end of the pendulum, which is
represented as a thin line.

• The upper ends, represented as thick lines, are assumed to be connected by a
rigid rod in such a way that a constant distance is maintained between the thick
lines.

• The experiment begins after a countdown performed by the experimenter, and
ends after ten minutes or when any of the lines leaves the visible range.

• The subject can abort the experiment at anytime.

According to these instructions, after the countdown, the numerical simulation is
started and the experiment begins. The experiment ends after ten minutes or when any
of the lines xT , qT i, and xM , qMi leaves the visible range [−3, 3]. The initial positions
of the animated lines, i.e., the initial values of the models, are set to xT (0) = −0.5,
qM1(0) = −0.6, qM2(0) = 0.6, ẋT (0) = ẋM (0) = 0, qT (0) = −0.5, qM1(0) = −0.6,
qM2(0) = 0.6, and q̇T (0) = q̇M1(0) = q̇M2(0) = 0. The model parameters are chosen to
be α = β = 21, γ = 50, and l = 1.

The six subjects were healthy volunteers aged 21 to 24 years. The experiments were
performed according to the principles of the Declaration of Helsinki and informed
consent was obtained. The experimental protocol was approved by the Bioethics
Committee of Utsunomiya University. The subjects were labeled A, B, C, D, E, and
F, and three pairs (A,B), (C,D), and (E,F) are considered in the coupling task.

4.2. Experimental results. First, we focus on subjects A and B and the pair (A,B).
Figure 12 shows the experimental results for single balancing performed independently
by subjects A and B. The thick line, which corresponds to the velocity ẋT of the target
(the upper end of the stick), slightly precedes the thin line, which corresponds to the
subject’s velocity ẋM , due to a combination of time delays from neural reflexes and
computer processing. Moreover, for the case in which balancing is performed by both
subjects, the power spectrum S(ω) of the balancing error ∆x exhibits a power law
behavior typical of neural controllers, which have two different power laws with an
exponent of ≈ −1/2 in the lower-frequency range [6].
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(a) Experimental device.

(b) Screen design.

Figure 11. Experimental setup of the coupled human balancing tasks.
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Figure 12. Experimental velocities of the target ẋT (thick line) and of
the subject’s movement ẋM (thin line), and power spectra of the balanc-
ing error ∆x for single balancing performed independently by subjects
A and B.

On the other hand, Fig.13 shows the experimental results for the case in which the
same subjects are coupled by a rigid rod of length l in the numerical model. Note that,
as a result of the equalities (4), the velocities of both targets (thick lines) coincide.
The thick line, which corresponds to the target velocity q̇T , slightly precedes the thin
line, which corresponds to the velocities q̇M1 and q̇M2 of the subject, and the balancing
errors ∆q1 and ∆q2 are governed by a power law having an exponent of ≈ −1/2 in
the lower-frequency range. Based on these results, the mechanical coupling structure
between the two balancing tasks maintains the time-delay and scaling-law properties
typical of the independently performed single balancing tasks.
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Figure 13. Experimental velocities of the target q̇T (thick line) and
of the subject’s movement q̇Mi (thin line), and power spectra of the
balancing error ∆qi for coupled balancing by the pair of subjects A
(i = 1) and B (i = 2).

4.3. Effects of coupling on stability and sensitivity. As discussed in Section
3.3, the correlation time (the first dominant peak in STCC) allows us to evaluate
the sensitivity of the corrective movements of the subjects, i.e., the tracking ability
of the subjects. The experimental correlation times for single balancing performed
independently by the two subjects (denoted as A and B) are shown in Fig.14 as
peak points τ̂ẋT

= 0.14, 0.12 of STCC. The differences between the correlation times
become slightly larger when the mechanical coupling structure is placed between the
two balancing tasks, as shown in Fig.15, i.e., τ̂ẋT

= 0.12, 0.18. The correlation times
obtained from different trials of the experiment and their averages are listed in Table
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coupled balancing performed by pair (A,B).

1. The averages in Table 1 show that the coupling structure increases the individual
differences between the subjects. In other words, the single balancing tasks yield
similar tracking abilities (〈τ̂〉 = 0.132, 0.136), whereas the tracking abilities become
asymmetric (〈τ̂〉 = 0.128, 0.168) when coupled by the mechanical structure. Similarly,
Table 2 lists the RMS of the balancing errors and their averages for estimating the
stabilities of the balancing. The averages in Table 2 indicate that the coupling has the
opposite effect on the RMS, as compared with the STCC, i.e., the coupling structure
decreases the individual differences in the RMS of the balancing errors from 〈RMS〉 =
3.62 and 5.34 for the single task to 〈RMS〉 = 3.02 and 2.50 for the coupled task.

The results in Table 1 and 2 imply that the coupling structure increases the indi-
vidual differences between the tracking abilities (STCC), while decreasing those of the
balancing stabilities (RMS). This effect on the six subjects can be seen in Fig.16, which
shows experimental plots of the correlation time τ versus the RMS of the balancing
errors over all trials of the single balancing tasks performed by subjects A, B, C, D, E,
and F and the coupled balancing tasks performed by pairs (A,B), (C,D), and (F,D).
The plots with filled triangles indicate the results for the single tasks, and the plots
with rectangles indicate the results for the coupled tasks. The oval is centered at the
average point of the corresponding plots and the radii in the horizontal and vertical
directions represent the standard deviations of the correlation time and of the RMS of
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Table 1. Correlation times at different trials for pair (A,B).

Subject Index of trial Average
1 2 3 4 5 〈τ̂ 〉

Single:
A 0.12 0.14 0.14 0.12 0.14 0.132
B 0.14 0.12 0.14 0.14 0.14 0.136

Coupled:
A 0.12 0.12 0.12 0.12 0.16 0.128
B 0.18 0.16 0.16 0.18 0.16 0.168

Table 2. RMS of the balancing errors at different trials for pair (A,B).

Subject Index of trial Average
1 2 3 4 5 〈RMS〉

Single:
A 2.4 2.9 3.8 5.5 3.5 3.62
B 4.9 4.9 5.8 5.0 6.1 5.34

Coupled:
A 2.9 3.5 2.4 3.9 2.4 3.02
B 2.4 2.8 2.6 2.7 2.0 2.50

balancing errors, respectively. A comparison of the single tasks for the solid oval with
the coupled tasks for the dashed oval reveals that the coupling structure decreases the
individual differences in correlation time, while increasing the individual differences
in the RMS. This result statistically confirms the coupling effect arising in the two
subjects, as shown in Table 1 and 2.

One possible explanation for these effects of coupling on the individual differences
might be the separation of roles assumed by the subjects in the case that requires
cooperation. However, similar asymmetrical properties can arise in the numerical
controller ui(t, τ) in the second equation of (5), which has no ability to cooperate.
Moreover, the numerical controllers provide feedback of the combination of their own
past states and the shared state, i.e., ∆qi = qT − qMi, in the following form:

ui = ui( ∆qi)
(

= β Ri(t) ∆qi(t − τ) in (5)
)

. (9)

In contrast, the human subjects can also receive visual feedback of their partner’s state
via the shared computer screen in Fig.11, and, as a result, their controller model may
appear to have the following structure:

ui = ui( ∆q1, ∆q2) (i = 1, 2). (10)

Developing precise descriptions of such a human controller model will provide the
first step toward exploring the coupling effects, such as the changes in the individual
differences. For this purpose, it appears that approaches based on learning theory and
evolutionary methods [15,16] will be helpful. However, a detailed explanation of these
effects is beyond the scope of the present paper and will be discussed elsewhere.

5. Conclusion. Coupled human balancing tasks are investigated based on pseudo-
neural controllers modeled using time-delayed feedback with random gain. It is shown
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Figure 16. Experimental plots of the correlation time τ versus the
RMS of the balancing errors over all trials of the single balancing tasks
performed by subjects A, B, C, D, E, and F and the coupled balancing
tasks performed by pairs (A,B), (C,D), and (F,D).

numerically that, compared with the case of single balancing tasks, the coupling struc-
ture increases the stability against balancing errors in terms of both amplitude and
velocity and improves the tracking ability of the controllers. We then perform an
experiment in which the pseudo-neural controller in the numerical model is replaced
with natural human balancing tasks carried out using computer mice. The results re-
veal that the mechanical coupling structure increases the individual differences in the
tracking abilities between the subjects, while decreasing the individual differences in
the stabilities of the balancing errors. The proposed model and experimental method
are expected to provide the simplest means by which to understand the cooperative
behavior between humans sharing mechanical contacts and to provide new insight
into welfare engineering and related fields. In the future, we intend to perform model
identification of human visuomotor tracking tasks in order to characterize the trade-
off mechanism between tracking abilities and stabilities produced by coupled human
subjects.
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